PHYS 2212

Look over Chapter 28 sections 1, 2, 6, 7, 8 Examples 1, 3, 4, 6

PHYS 1112

Look over Chapter 20 sections 1, 2, 3, 4 Examples 1, 2, 4, 5, 7, 8

Good Things to Know

1)Properties of Magnetic fields.

- How to find the force on a charged particle moving in an electric field.
- 3)Properties of the Circular motion of a particle in an electric field.
- 4)How to find the force on a wire in an Magnetic field.

The Magnetic Field		
	We have discussed how a charged object produces a vector field -the electric field E- at all points in the space around it.	
Called	Cold the Manual's Cold	
Similarly, a magnet produces a vector <i>B</i> - at all points in the space around it	field -the Magnetic Field	

Right-Hand Rule

For a positive charge your thump gives the direction of the force. For a negative charges the force is in the opposite direction.

 Using the Force

 The Force F_B acting on a charged particle moving with velocity v through a magnetic field B is always perpendicular to v and B.

 F_B can not change the particle's speed.

Units of B		
The SI unit for B is the Newton per (Coulomb-meter per second) which is called a Tesla (T).		
$1 tesla = 1T = 1 \frac{Newton}{(Coulomb)(meter / sec ond)} = 1 \frac{N}{A \cdot m}$		
Another (non-SI) unit of B is a gauss (G): $1 T = 10^4 G$		

Magnetic Field Lines

We can represent magnetic fields with field lines, just as we did for electric fields. Similar rules apply:

The direction of the tangent to a magnetic field line at any point gives the direction of B at that point.
The spacing of the lines represents the magnitude of B.

Example 1 1) An alpha particle travels at a velocity v of magnitude 550 m/s through a uniform magnetic field B of magnitude 0.045 T. The angle between v and B is 52°. What are the magnitudes of: a) The force F_B acting on the particle due to B b) The acceleration of the particle. c) Does the speed of the particle increase, decrease or remain the same? (An alpha particle has a charge of +3.2×10¹⁹C and a mass of 6.6 ×10²⁷ kg.)

PHYS 2212

Look over Chapter 29 section 1, 2, 3, 4, 5 Examples 1, 2, 3, 4

Good Things to Know

- 1)The Biot-Savert Law
- 2)How to calculate the Magnetic field due to a current carrying wire.
- 3)The force between to current carrying wires.
- How to use Amperes Law To find the Magnetic fields due to current carrying wires.

Calculating Magnetic fields due to a Current	
	We have seen that a current in a wire will produce a magnetic field.
We now want to calculate the field proc	duced by a current.

The Biot-Savert Law		
Too find the magnetic field due to a wire we can break the wire up into a large number of pieces <i>ds</i> and look at the magnetic field due to one of these pieces as:		
$dB = \frac{\mu_0}{4\pi} \frac{i d \vec{s} \times \hat{r}}{r^2}$		

Two Current Carrying Wires	
Since all current carrying wires produce magnetic fields, there will be a force between two current carrying wires.	

Example 3

- Two long straight parallel wires are 15 cm apart. Wire A carries 2.0 A. Wire B's current is 4.0 A in the same direction.
- a) Determine the magnetic field magnitude due to wire A at the position of wire B.
- b) Determine the magnetic field magnitude due to wire B at the position of wire A.
- c) Are these two magnetic fields equal and opposite?
- d) Determine the force on wire A due to wire B.
- e) Determine the force on wire B due to wire A.
- f) Are these forces equal?

Ampere's Law		
We can always use the Biot-Savart law to find the magnetic field. In some cases we can use the symmetry of the situation and Ampere's law (just like we used Gauss' law for electrostatics) to make finding the magnetic field easier.		
$\lim_{\Delta s \to 0} \sum_{i} \vec{B}_{i} \bullet \Delta \vec{s}_{i} = \mu_{0} i_{\text{enc}}$	$\prod \vec{B}_i \bullet d\vec{s} = \mu_0 i_{\text{enc}}$	

