Look over	:
	Sections 1-9
	1, 2, 3, 4, 5, 6, 7, 8,
-	Sections 1-5, 7, 8
	1, 2, 3, 4, 5, 6, 7, 8

	Topics Covered
1) Work do	ne by a force (General Form)
2) Kinetic E	nergy

- 2) Kinetic Energy
 3) The Work-Energy Theorem
- 4) Power
- 5) Conservative and Non-conservative forces
- 6) Potential Energy7) Conservation Of Mechanical Energy
- 8) Conservation Of Energy

What To Do With	Changing Forces
Since \mathbf{F} and \mathcal{M} are constant, \mathbf{a} must also be constant so we can find the velocity as:	$\vec{v}_1 = \vec{v}_0 + \vec{a}t$
	$= \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$ $r_0 = 0 \text{ and } r_1 = r$
But what can we do if the	e force is not constant?

The Work-Energy Theorem
The work done on the object will be equal to the change in
kinetic energy.

$$W = KE_f - KE_i$$

	rk-Energy theorem is the starting point for a ng generalization in physics.
Ce	e will compute separately the work done by ertain types of forces and give a special name to work done by each type.

6

Units o	f Power
The units of power are Work units divide by time units.	$\frac{J}{s} = W$ (Watts)

Clown's Need Physics Too
It would be nice to calculate how high the balls will travel with out having to apply Newton's Three Laws of Motion

If there is no friction between the ball and the floor then the ball's initial *KE* and its final *KE* will be the same.

Conservative Forces

The force that the spring exerted on the ball <u>Conserved</u> the KE of the ball.

If there is **Friction** between the ball and the floor then the final *KE* will be less then the initial *KE*. So the ball's ability to do work has not been conserved.

So the frictional forces do not conserved the KE of the ball.

	Conservative	Forces Again
De Maderine de	GRUIDHUHUTHTE UMUMMULIANUHUTHTE UMUM	
	ere is no air resistance then he baseball is zero for the ro	the net work done by gravity und trip (up and back).

Conservative	e Forces - One More Time	
	The Work done by a conservative force <u>does not depend on the</u> <u>path</u> , but only on the end points.	

Conservative Forces- 3rd and last Definition

A force is <u>Conservative</u> if the work done by it on a particle that moves between two points depends only on these points and not on the path.

A force is <u>Nonconservative</u> if the work done by it on a particle that moves between two points depends on the path taken between those two points.

	Potential Energy
say for this ∆KE as the Potential	v consider the spring and the ball as a system and system that if the Kinetic Energy changes by configuration of the system changes, then the Energy (PE) must change by an equal but mount so that the sum of the two changes is zero.
	$\Delta KE + \Delta PE = 0$
	or
	KE + PE = A Constant

Conservation Of Mechanical Energy
Since E is constant even as the particle moves from position
$$x_0$$
 to position x and the speed changes from V_0 to V we can write:
$$\frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv_0^2 + U(x_0)$$
This is the Law of Conservation of Mechanical Energy for conservative forces.

• Wo	Summary of Chapter 7 and 8 rk: $W = Fd \cos \theta$	all's Real
۰Kine	etic energy is energy of motion; $KE = \frac{1}{2}mv^2$	
force	ential energy is energy associated with as that depend on the position or guration of objects.	
• PE	$e_{\text{grav}} = mgy$ elastic PE $= \frac{1}{2}kx^2$	
	net work done on an object equals the ge in its kinetic energy	
	only conservative forces are acting, nanical energy is conserved	
• Pov	wer is the rate at which work is done	年のか