Chap 8 13

Student.	:	

- 1. John Dalton reasoned that atoms exist from the evidence that
 - A. there are numerous, tiny empty spaces in matter.
 - B. elements always combined in certain fixed ratios.
 - C. elements could not be broken down into simpler substances.
 - D. matter was homogeneous.
- 2. When Rutherford found that some of the alpha particles fired at the gold foil were widely deflected, he concluded that
 - A. gold was an element, not a compound as previously believed.
 - B. atoms are solid, with spaces between them.
 - C. atoms are electrically neutral.
 - D. the positive charge in an atom is concentrated in a tiny nucleus.
- 3. Rutherford concluded from his calculations that the volume of an atom
 - A. is filled with protons, neutrons and electrons.
 - B. is mostly protons, with electrons revolving around the outside.
 - C. is filled with electrons.
 - D. is mostly empty space.
- 4. The atomic number of an element is the number of
 - A. protons.
 - B. protons and neutrons.
 - C. protons and electrons.
 - D. all the particles in the atom.
- 5. Neutral atoms of a given element all have the same
 - A. number of protons.
 - B. atomic number.
 - C. number of electrons.
 - D. All of the above.
- 6. Atoms in an incandescent gas
 - A. emit all frequencies of light in a continuous spectrum.
 - B. emit different frequencies of light depending on its temperature.
 - C. emit characteristic frequencies of light.
 - D. absorb, rather than emit light.

7.	The quantum mechanical model of the atom differs from the Bohr model in that it
	A. considers the electron as a particle.B. considers the electron as a wave.C. predicts the specific location of the electron in an atom.D. states that electrons can only exist at specific distances from the nucleus.
8.	The proposal that matter, like light, exhibits wave-like behavior was
	A. verified in diffraction experiments with a beam of electrons.B. never tested since it was known to be impossible.

- C. shown to be theoretically possible, but never verified by experiment.
- D. verified by physical measurements of a moving baseball.
- 9. The energy of a photon of light emitted by an electron equals the
 - A. energy of the level it currently occupies.
 - B. energy of the level it just left.
 - C. energy of the ground state of the atom.
 - D. difference in energy between two levels.
- 10. Photons of which of the following colors of light possess the greatest amount of energy?
 - A. blue
 - B. green
 - C. yellow
 - D. red
- 11. Isotopes of an element are atoms that have
 - A. the same number of protons, but a different number of electrons.
 - B. the same number of neutrons, but a different number of protons.
 - C. the same number of protons, but a different number of neutrons.
 - D. equal numbers of protons and neutrons.
- 12. Identify the number of protons, neutrons and electrons in an atom of ${}^{19}_{0}{\rm F}$.
 - A. 9 protons, 10 neutrons and 9 electrons
 - B. 9 protons, 10 neutrons and 10 electrons
 - C. 9 protons, 19 neutrons and 9 electrons
 - D. 10 protons, 9 neutrons and 10 electrons
- 13. This type of radiation is really the nucleus of a helium atom.
 - A. alpha
 - B. beta
 - C. gamma
 - D. All of the above.

D. All of the above. 16. Isotope A has a half-life measured in minutes, whereas isotope B has a half-life of millions of years. Which is more radioactive? A. isotope A B. isotope B C. Both are equally dangerous. D. It depends on the temperature of each. 17. The basic requirement for a fusion reaction is (are) A. temperature on the order of 100 million °C. B. dense concentration of hydrogen nuclei. C. confinement at 10 atmospheres pressure for at least one second. D. All of the above. 18. A Geiger counter measures radiation indirectly by measuring A. flashes of light. B. speaker static. C. electrons released by ionization. D. curies. 19. Reactor control rods are made of a substance that A. absorbs neutrons. B. emits neutrons. C. reflect neutrons. D. slow down neutrons so they produce more fission.

3

15. Nuclei with a higher than desired neutron-to-proton ratios tend to undergo which type of decay?

14. This type of radiation can easily pass through a human.

A. alphaB. betaC. gamma

A. alphaB. betaC. gamma

D. All of the above.