PowerPoint Lectures to accompany Physical Science, 8e

Chapter 8 Atoms and Periodic Properties

*Core Concept

Different fields of study contributed to the development of a model of the atom.

*Dalton - atoms indivisible

- *Thomson and Millikan experiments *Electron mass very small, no measurable volume *What is the nature of an atom's positive charge?
- *Thomson's "Plum pudding" model *Electrons embedded in blob of positively charged matter like "raisins in plum pudding"

*Early Models of the Atom

Predictions of classical theory * Electrons orbit the nucleus * Curved path = acceleration * Accelerated charges radiate * Electrons lose energy and spiral into nucleus * Atoms cannot exist! Experiment - atoms do exist ⇒ New theory needed * Classical "Atoms"

*The Quantum Concept

*Max Planck (1900) *Introduced quantized energy

*Einstein (1905) *Light made up of quantized photons *Higher frequency photons = more

photons = more energetic photons

*Bohr's Theory

Three rules:

- 1. Electrons only exist in certain allowed orbits
- 2. Within an orbit, the electron does not radiate
- 3. Radiation is emitted or absorbed when changing orbits

PowerPoint Lectures to accompany Physical Science, 8e

Chapter 13 Nuclear Reactions

Nuclear reactions involve changes in the nucleus of the atom.

*Core Concept

*Nuclear Radioactivity

*Natural radioactivity * Spontaneous emission of particles or energy from an unstable nucleus * Discovered by Becquerel

- *Three types of radioactive decay
 - * Alpha decay (He-nucleus)
 - * Beta decay (high energy electron)
 - * Gamma decay (high energy electromagnetic radiation)

- 1. Atomic number > 83: unstable
- 2. Nucleon number = 2, 8, 20, 28, 50, 82 or 126: added stability
- 3. Pairs of protons and pairs of neutrons: added stability
 - Odd number of both protons and neutrons less stable

*Generalizations -Nuclear Stability

- 4. Neutron: proton ratios for added stability
 - 1:1 in isotopes with up to 20 protons
 - 1+increasing:1 with increasingly heavy isotopes

*Half-life

- *Time required for 1/2 of a radioactive sample to decay
- *Example: 1 kg of an unstable isotope with a one-day half-life
- * After 1 day: 500 g remain * After 2 days: 250 g remain
- * After 3 days: 125 g remain
- *U-238 decay series: wide half-life variation

*Measurement of Radiation

Measurement methods *Ionization counters *Detect ions produced by radiation *Example: Geiger counter *Scintillation counters *Rely on flashes of light produced as radiation strikes a phosphor

* Zinc sulfide: phosphor used in TV picture tubes

* Radiation Units * Measured at the source * Activity: number of disintegrations per unit time * Units: Becquerel (SI unit), Curie, ... * Measured where absorbed * Human exposure: rem * SI unit: millisievert * Cai: radiation absorbed dose (unit = gray) * Dosage related to effects on organism

*Radiation Exposure

* Natural radioactivity * 100-500 mrem/yr

* Sources

- * Cosmic rays from outer space
- * Earth's residual radioactivity
- * Medical x-rays, TVs, ...
- * Consequences
 - * DNA disruption
 - * Free radical production
- * Threshold versus linear exposure models

*Nuclear Energy

* Interconversion of mass and energy

* Mass defect

- * Difference between masses of reactants and products
- * Binding energy
- * Energy required to break a nucleus into individual protons and
- neutrons * Ratio: binding energy to nucleon number
- * Iron-56 = most stable nucleus

* Nuclear Power Plants *Rely on controlled fission chain reactions

*Steel vessel contains fuel rods and control rods *Full plant very intricate * Containment and auxiliary buildings necessary *Spent fuel rods * Contain fissionable materials U-235, Pu-239 * Disposal issues not settled

